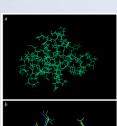
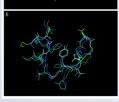


NMR Hands On

UAB Metabolomics Training Course June 14-18, 2014

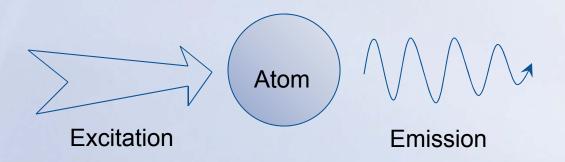

Wimal Pathmasiri, Rodney Snyder
NIH Eastern Regional Comprehensive Metabolomics Resource Core
(RTI RCMRC)

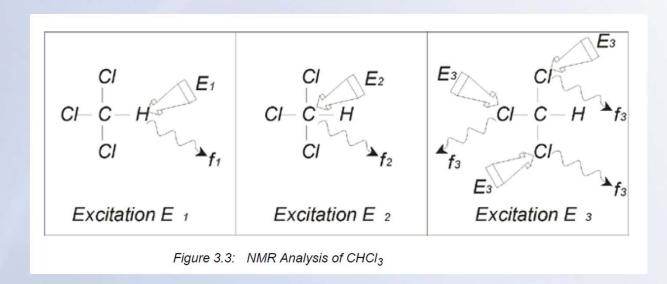

RTI International is a trade name of Research Triangle Institute.

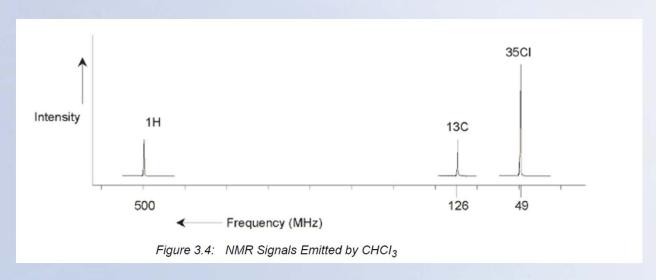
www.rti.org

Nuclear Magnetic Resonance (NMR) Spectroscopy

- Detects NMR active nuclei
- Robust and highly reproducible
- Non-destructive
- Quantitative
- Used in
 - Structure elucidation
 - Small molecules
 - Macromolecules (DNA, RNA, Proteins)
 - A number of techniques
 - 1D, 2D, 3D
 - Molecular motion and dynamics
- Similar method used in Imaging (MRI, fMRI)






NMR Spectroscopy

NMR Frequencies

AVANCE Beginners User Guide 004 (Bruker, Germany)

NMR Spectroscopy

Frequencies in 11.7T magnet

Nucleus	Basic Frequency (MHz)	Natural Abundance (%)
¹ H	500	100
² H	77	0.015
³ H	533	0.005
¹³ C	126	1.11
³⁵ Cl	49	75.53
³⁷ Cl	41	24.47
¹⁵ N	50	0.37
¹⁹ F	470	100
³¹ P	202.5	100
⁵⁷ Fe	16.25	2.20

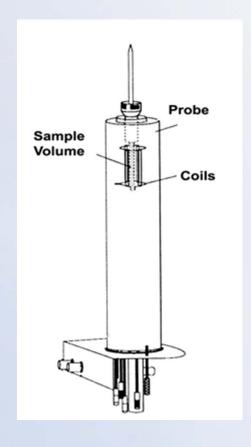
AVANCE Beginners User Guide 004 (Bruker, Germany)

NMR Spectroscopy Explained: Simplified Theory, Applications and Examples for Organic Chemistry and Structural Biology: Neil E Jacobsen, John Wiley & Sons, Inc. 2007, ISBN 978-0-471-73096-5

NMR Spectrometer

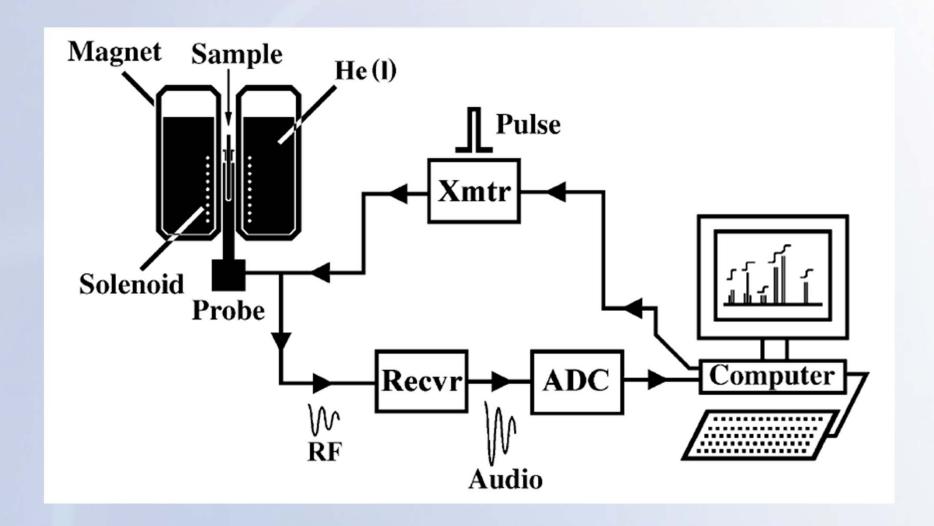
NMR Console

Computer

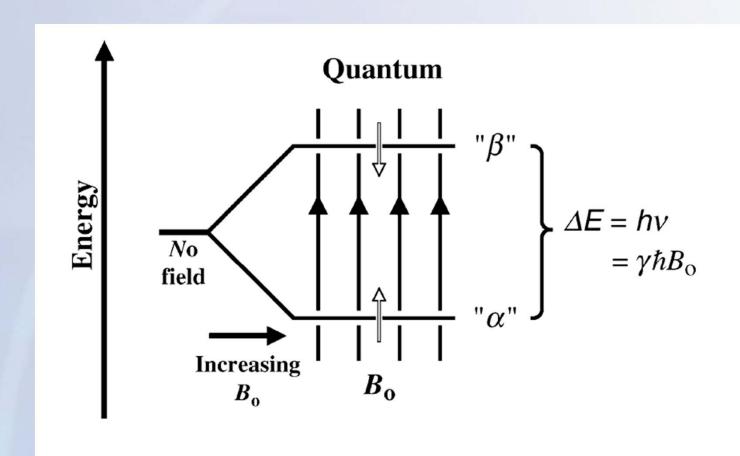

Magnet

Probe and shim system

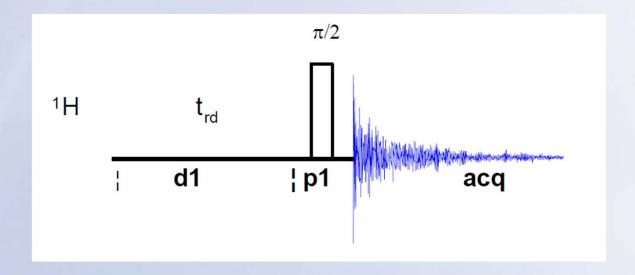
Helium ports Helium tower Nitrogen ports -Nitrogen tower Insert sample here Metal plug Vacuum Chamber He He Magnet Insert Probe here


NMR Magnet and the probe

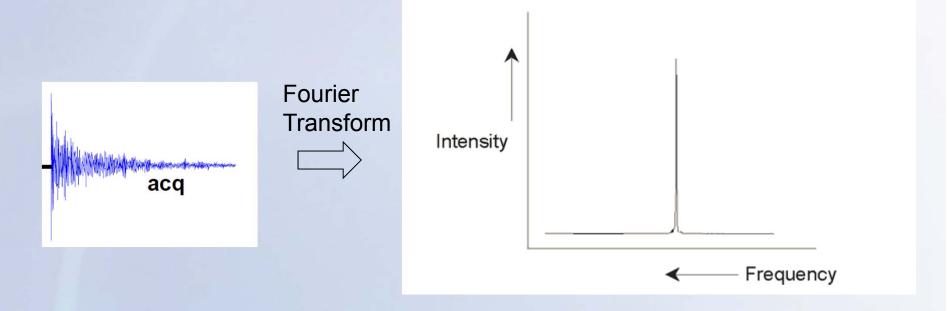
Sample is positioned on the probe using a spinner.



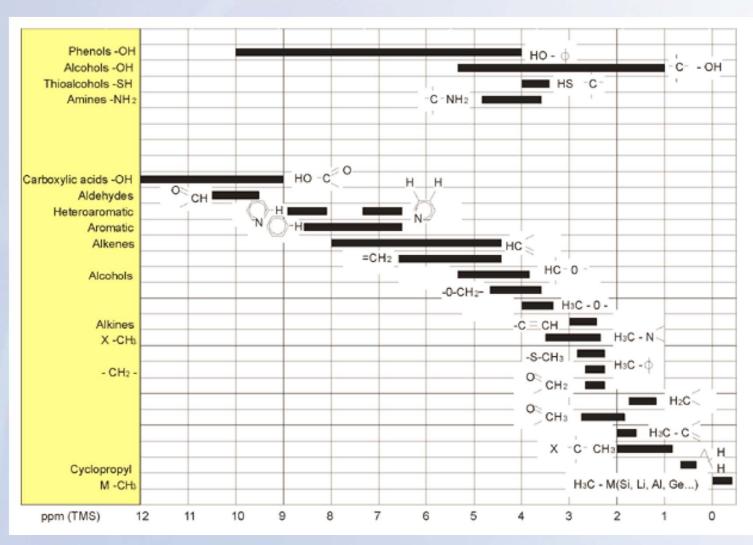
NMR Experiment



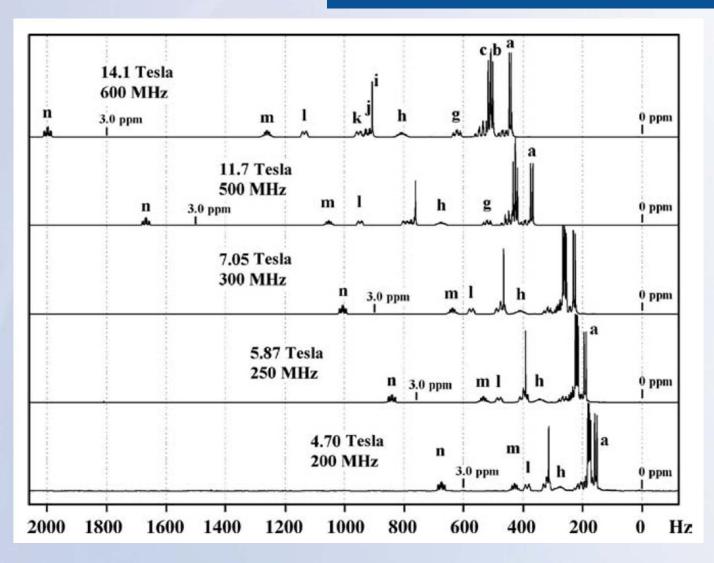
NMR Spectroscopy


Basic ¹H Experiment

d1 = delay p1 = pulse width acq = acquisition time


NMR Signal

Chemical shift (ppm scale) = frequency / Spectrometer Frequency (MHz)


Chemical Shift of molecules

NMR Spectroscopy Explained: Simplified Theory, Applications and Examples for Organic Chemistry and Structural Biology: Neil E Jacobsen, John Wiley & Sons, Inc. 2007, ISBN 978-0-471-73096-5

Static Magnetic field strengths

NMR Spectroscopy Explained: Simplified Theory, Applications and Examples for Organic Chemistry and Structural Biology: Neil E Jacobsen, John Wiley & Sons, Inc. 2007, ISBN 978-0-471-73096-5

Sample Preparation for metabolomics

- Balance and calibration check
- Prepare samples on ice, Minimize freeze thaw cycles
- Dilution
 - Using D₂O or Buffer (0.2M Phosphate)
- Extraction
 - MeOH or MeOH/ Water
 - MeOH/ CHCl₃/ H₂O (Folch Method)
 - 50% Acetonitrile in Water
 - Dry the sample
 - Reconstitute in D₂O or 0.2M Phosphate Buffer
- Internal standards
 - Chemical shift reference (DSS, also for line shape)
 - pH reference (Imidazole)
- Pooled QC Samples
- Consistency across the whole study is very important

Sample Preparation for Metabolomics Analysis

Current sample preparation practices (in brief)

Biofluids

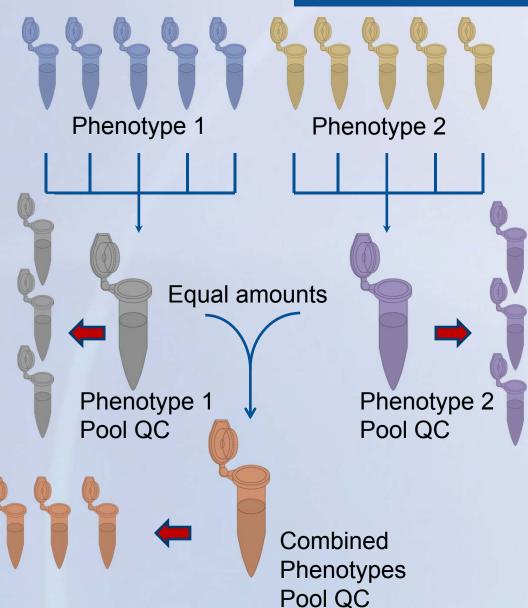
- Dilute with D₂O/ buffer/ 0.9% Saline
- Add internal standard (ISTD, eg. Chenomx) solution or formate (for serum).
- Centrifuge and transfer an aliquot into NMR tube

Tissue and Cells

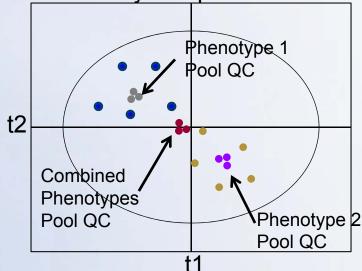
- Homogenization performed in ice cold 50/50 acetonitrile/water
- Supernatant dried down (lyophilized)
- Reconstituted in D₂O and ISTD (eg. Chenomx) solution

Pooled QC Samples (Sample Unlimited)

- Mix equal volume of study samples to get pooled QC samples
- 10% QC samples


Pooled QC Samples (Sample Limited)

- Use independent pool of similar samples
- 10% QC samples
- Daily balance and pipette check


Samples are randomized for preparation and data acquisition

Pooled QC Samples

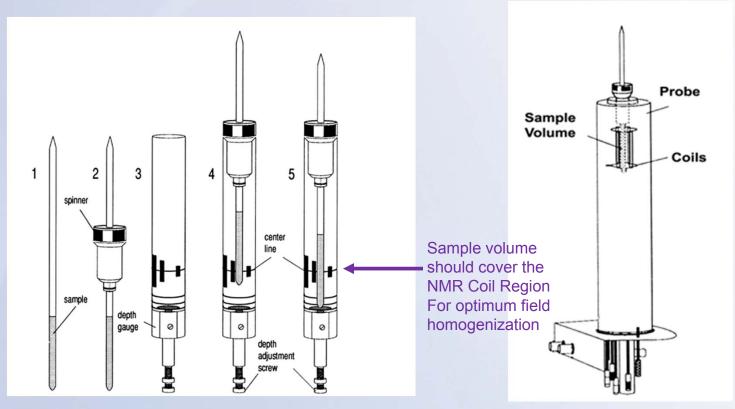
- Aliquots from each sample in the study phenotype are pooled (phenotypic pool)
- Equal amount of each phenotypic pools are pooled (Combined phenotypic pool)
- Replicates of pools are prepared
- Pool samples are prepared along with the study samples

Pooled samples should cluster tightly

NMR Data Acquisition

1D NMR

- 1st increment of NOESY
 - noesyprid (Bruker)
- CPMG (serum or plasma)
 - cpmgpr1d (Bruker)
 - To remove broadening of signals due to macromolecules (eg. Proteins and lipids)


2D NMR (for structure elucidation)

- 2D J-Resolved
- COSY
- TOCSY
- HSQC
- HMBC

Sample Amount in NMR tube

- At least 10% D₂O in the sample
- Optimum volume
 - 550 600 uL (5mm tube)
 - 200 uL (3 mm tube)
- Sample gauge is used

For very small sample amounts, a NMR with a microcoil probe is an option.

AVANCE Beginners User Guide 004 (Bruker, Germany)

Steps in Data Acquisition

- Place the sample in the spinner
 - Use sample gauge
- Tune and match the probe
 - Automatic in new instruments
- Lock and shim the instrument
 - Gradient shimming
- Create and set up NMR parameters
- Acquire data
- Process the NMR spectrum

ACKNOWLEDGEMENTS

Director RTI RCMRC

Susan Sumner, PhD

Program Coordinator

Jason Burgess, PhD

NIH Scientific Officer

David Balshaw, PhD, NIH/NIEHS

Internship Program

Stella Lam, BS

Feasibility Studies

Susan Sumner, PhD Susan McRitchie, MS Executive Committee

Website

Roger Austin, MS

Biochemistry and Molecular Biology

Timothy Fennell, PhD Ninell Mortensen, PhD Delisha Stewart, PhD

Biorepository

Brian Thomas, PhD Mike McCleary, BS

Interns

Tammy Cavallo Aastha Ghimire Zachery Acuff

LC-MS Metabolomics

Suraj Dhungana, PhD Brian Thomas, PhD James Carlson, MS Alex Kovach, BS Rodney Snyder, MS Moses Darko, BS

GC-MS Metabolomics

Wimal Pathmasiri, PhD Jocelin Deese-Spruill, BS Keith Levine, PhD James Harrington, PhD William Studabaker, PhD

NMR Metabolomics

Wimal Pathmasiri, PhD Kelly Mercier, PhD Rodney Snyder, MS Tammy Cavallo, BS Kevin Knagge, PhD, DHMRI Jason Winnike, PhD, DHMRI

Statistics, Bioinformatics, and Computing

Susan McRitchie, MS Robert Clark, PhD Andrew Novokhatny, BS

Advisors: Imperial College, UK

Jeremy Nicholson, PhD Elaine Holmes, PhD Ian Wilson, PhD

